Blog | Breve - Producent Transformatorów https://www.breve.pl Polski producent transformatorów, regulatorów, dławików i zasilaczy Fri, 08 Mar 2024 13:42:07 +0000 pl-PL hourly 1 https://wordpress.org/?v=5.9.9 https://www.breve.pl/pliki/2019/01/cropped-LOGO-BREVE-sygnet-32x32.png Blog | Breve - Producent Transformatorów https://www.breve.pl 32 32 Sposoby montażu i bezobsługowe zabezpieczenia transformatorów na szynę https://www.breve.pl/blog/nowe-sposoby-montazu-i-bezobslugowe-zabezpieczenia-transformatorow-na-szyne-din Thu, 21 Apr 2022 07:57:34 +0000 https://www.breve.pl/?post_type=blog&p=394582 Transformatory do montażu na szynie DIN wykorzystywane są najczęściej w przemysłowych instalacjach sterowania maszyn lub w sygnalizacji stanu obwodów. Wynika to z faktu, że współcześnie większość aparatów elektrycznych niezbędnych do budowy takich układów, preferuje właśnie ten sposób montażu. Dzięki temu obserwuje się najszybszy rozwój nowych rozwiązań i najszybciej przybywającą liczbę nowych urządzeń w tej kategorii […]

The post Sposoby montażu i bezobsługowe zabezpieczenia transformatorów na szynę first appeared on Breve - Producent Transformatorów.]]>
Transformatory do montażu na szynie DIN wykorzystywane są najczęściej w przemysłowych instalacjach sterowania maszyn lub w sygnalizacji stanu obwodów. Wynika to z faktu, że współcześnie większość aparatów elektrycznych niezbędnych do budowy takich układów, preferuje właśnie ten sposób montażu. Dzięki temu obserwuje się najszybszy rozwój nowych rozwiązań i najszybciej przybywającą liczbę nowych urządzeń w tej kategorii sposobu montażu.

Rozwój samych transformatorów jest znacznie wolniejszy, jeśli spojrzymy na ich zasadę działania czy wykorzystywane materiały, ale staje się widoczny, jeśli zwrócimy uwagę na ich obudowy oraz różne ułatwienia dla montażystów i projektantów.

Początkowo montaż transformatorów na szynę polegał na zamocowaniu w standardowym transformatorze EI specjalnego adaptera umożliwiającego montaż na szynie. Do dzisiaj takie rozwiązanie wykorzystywane jest w niskobudżetowych instalacjach. Z czasem jednak okazało się, że taki sposób montażu jest niewygodny. Przez adapter transformator mocno odstawał od szyny i znacznie odbiegał wymiarami od innych urządzeń, a jego waga i odsunięty środek ciężkości oddziaływały dużym momentem siły na zaczepy szyny montażowej wpływając negatywnie na ich trwałość. Oprócz tego, taki transformator wymagał odrębnego aparatu w postaci gniazda na bezpiecznik. Takie rozwiązanie nie było zbyt optymalne również pod względem cieplnym, a co za tym idzie ograniczało, bardziej niż późniejsze rozwiązania, możliwe do osiągnięcia moce.

Kolejnym etapem konstrukcyjnym była adaptacja istniejących na rynku obudów, które umożliwiały zmianę pozycji transformatora względem szyny, poprawę jego chłodzenia przez zalewanie żywicą oraz zamocowanie zabezpieczenia. Przykładem takiego rozwiązania jest seria transformatorów PSZ. Niestety również to rozwiązanie nie zaspokajało wszystkich potrzeb rynku, ponieważ wymiary jakie osiągały takie transformatory, niejednokrotnie przeszkadzały innym aparatom. Presji nie poddały się jednak wykonania większych mocy, które nadal są używane, co więcej, pojawiają się też nowe, ciekawe wersje obudów, jak np. w serii transformatorów PTM.

Wzrost sygnałów z rynku o potrzebie zmiany, zmobilizował producentów do tworzenia własnych, dedykowanych obudów. Tak powstały transformatory z serii PSS. Ta linia produktów zdobyła bardzo szybko uznanie w skali europejskiej. Ich budowa i parametry zbliżyły się całkowicie do stawianych wtedy oczekiwań, a obudowy wyprzedzały ówczesny design przemysłowy. Z wymiarów zadowoleni byli instalatorzy, projektantów cieszyła duża liczba gabarytów mocy, czy też wbudowane we wnętrzu obudów gniazda bezpiecznikowe, które to zwalniały ich z konieczności zabezpieczania transformatorów dodatkowym zewnętrznym aparatem.

Transformatory tej serii nadal mają powodzenie, jednak rynek „nie śpi” i szybko okazało się, że aparaty na szynę wykreowały swój własny standard wymiarowy. Wszechotaczające nas zabezpieczenia typu „S”, mnogość obudów dopasowanych do nich maskownicami itp., spowodowały presję, by dopasowywać kształt i wymiary urządzenia do nowych standardów. Za jednostkę zajętości szyny przyjęto „moduł”, który oznacza szerokość standardowej „S-ki”. Konstruktorzy i projektanci transformatorów, we współpracy z nowo powstałymi firmami zajmującymi się „designem przemysłowym”, podjęli się ponownego spojrzenia na transformator na szynę. Uwzględniono szereg oczekiwań, m.in.: wymiary, łatwość montażu i demontażu, wielkości gabarytów mocy, łatwość przyłączania przewodów, skuteczność oddawania ciepła, bezobsługowość zabezpieczeń czy też możliwości dalszego rozwoju w kierunku dodatkowych uzwojeń i odczepów napięciowych. Po uwzględnieniu wszystkich wymienionych, a także innych, nie podanych wyżej kryteriów, powstała seria transformatorów PSS N. Czym wyróżniają się te urządzenia na tle konkurencji?

Zacznijmy od tego, że seria PSS N zawiera następujące moce gabarytowe: 16-20-30-50-63-80VA. W dziedzinie całej rozpiętości mocy wykonań transformatorów niskiego napięcia jest to dość skromny przedział, ale za to absolutnie wystarczający do zastosowań na szynie DIN. Na szczególną uwagę zasługuje natomiast kwestia zabezpieczeń zastosowanych w serii PSS N. Wcześniej do zabezpieczania takich transformatorów służyły bezpieczniki topikowe, jednak z racji wymaganych tu małych wartości prądu musiałyby to być tzw. bezpieczniki „radiowe” – takie używane są w serii PSS. Niestety obsługa tego typu bezpieczników przysparza wielu problemów, zwłaszcza w sytuacji gdy bezpiecznik się przepali i trzeba go wymienić. Z tego powodu postanowiono, że w nowej serii zostanie wbudowane zabezpieczenie termiczne na bazie elementu PTC. Właściwości takiego elementu byłyby jednak niewygodne, gdyby był on zainstalowany na stronie pierwotnej transformatora, ponieważ aby transformator powrócił do stanu pracy, oprócz jego ostygnięcia wymagane byłoby odłączenie jego zasilania na kilka sekund. Z tego powodu zabezpieczenie PTC znajduje się na stronie wtórnej. Przeciążenie trwale blokuje transformator uniemożliwiając jego ponowne załączenie bez zdjęcia zasilania, a więc daje szansę na bezawaryjne usunięcie błędu, natomiast zwarcie za transformatorem blokuje urządzenie do czasu jego usunięcia. A co jeśli zwarcie powstanie w samym uzwojeniu pierwotnym? Producent zadbał o to, by taka sytuacja nie miała miejsca dzięki zastosowaniu odpowiedniej klasy izolacji drutu nawojowego.

Seria PSS N zdobywa zwolenników w całej Europie szybciej, niż się tego spodziewano, co potwierdza słuszność decyzji konstrukcyjnych i projektowych. Czy to koniec rozwoju? Z pewnością nie. Na razie nie wiadomo czego rynek będzie oczekiwał. Być może indywidualności kolorystycznej, być może odejścia od standardów napięciowych w celu minimalizacji zużycia energii. Pytanie o przyszłe oczekiwania i kierunki rozwoju są czymś normalnym w biznesie. Jedno jest pewne – będzie ciekawie.

Mgr inż. Krzysztof Majewski

The post Sposoby montażu i bezobsługowe zabezpieczenia transformatorów na szynę first appeared on Breve - Producent Transformatorów.]]>
Mobilny zespół regulowanych zasilaczy AC i DC https://www.breve.pl/blog/mobilny-zespol-regulowanych-zasilaczy-ac-i-dc Fri, 01 Apr 2022 11:49:58 +0000 https://www.breve.pl/?post_type=blog&p=394418 Zespół konstruktorów BREVE przygotował na zlecenie Klienta nietypowy zespół regulowanych zasilaczy AC i DC. Urządzenie zostało zaprojektowane do prac testowych przy produkcji napędów odłączników energetycznych. Zespół zasilaczy umożliwia płynną, dokładną i niezależną regulację napięć AC i/lub DC na pięciu odrębnych wyjściach. Wszystkie wyjścia są separowane od sieci oraz między sobą, co gwarantuje bezpieczną pracę operatorów.  […]

The post Mobilny zespół regulowanych zasilaczy AC i DC first appeared on Breve - Producent Transformatorów.]]>
Zespół konstruktorów BREVE przygotował na zlecenie Klienta nietypowy zespół regulowanych zasilaczy AC i DC. Urządzenie zostało zaprojektowane do prac testowych przy produkcji napędów odłączników energetycznych.

Zespół zasilaczy umożliwia płynną, dokładną i niezależną regulację napięć AC i/lub DC na pięciu odrębnych wyjściach. Wszystkie wyjścia są separowane od sieci oraz między sobą, co gwarantuje bezpieczną pracę operatorów.  Wyposażony został w wysokiej klasy mierniki cyfrowe, co pozwala zakwalifikować zestaw do prac badawczych. W urządzeniu zastosowano szereg innowacyjnych rozwiązań odnoszących się do znaczącej poprawy rozdzielczości nastaw, szybkości zmian nastaw na wyjściach DC w kierunku obniżania, a także ergonomii.

Parametry techniczne zestawu:

– Zasilanie 3x400V+N

– Moc nominalna ciągła: 21800W

– Moc nominalna pozorna: 22500VA

– Wyj1:

  • Zakres1 : 80-150VDC 72A(praca ciągła)
  •  Zakres2 : 170-275VDC 72A(praca ciągła)
  • Spadek napięcia wyj1. przy 20A <=3%
  • Woltomierz + Amperomierz, cyfrowe
  • Wybór zakresu dwoma przełącznikami
  • Zakresy dodatkowe 65-168 oraz 188-260 VDC 72A
  • Zakresy regulacji VDC podane dla prądu 72Az tolerancją +-2V
  • Załączanie wyjścia zasilacza – za pomocą przycisków

– Wyj2 : 0-250VAC 1faz min 2A

– Wyj3 : 0-250VAC 1faz min 2A

– Wyj4 : 0-250VDC min 2A

– Wyj5 : 0-250VDC min 2A Rys. poglądowy

– Wyj 2..5 niezależnie regulowane, każde z woltomierzem cyfrowym

– Wyj6 : Tester ciągłości obwodu na prądzie AC (Dioda + piszczyk), niski prąd, niskie napięcie (separacja)

– Załączanie i wyłączanie wyjść 2-6 za pomocą wyłączników podświetlanych

– Separacja od sieci zasilającej – brak możliwości porażenia prądem doziemnym

– Wyłącznik bezpieczeństwa

– Zabezpieczenie nadmiarowo-prądowe na wejściu + zabezpieczenia poszczególnych wyjść

– Urządzenie mobilne na kołach

– Uchwyty do przemieszczania i zwijana sznura sieciowego

– Sznur sieciowy 20mb z wtyczką 3faz 32A

– Wskaźniki załączenia poszczególnych wyjść

– Wyprowadzenia na zaciski laboratoryjne

– Masa całkowita ok. 280kg

The post Mobilny zespół regulowanych zasilaczy AC i DC first appeared on Breve - Producent Transformatorów.]]>
Stan zwarcia pomiarowego transformatora https://www.breve.pl/blog/stan-zwarcia-pomiarowego-transformatora Mon, 04 May 2020 22:00:00 +0000 https://www.breve.pl/blog/stan-zwarcia-pomiarowego-transformatora Pisaliśmy już o tym, czym jest stan jałowy transformatora i dokładnie przyjrzeliśmy się stanowi jego obciążenia.  Teraz zajmiemy się kolejną właściwością – przybliżamy stan zwarcia pomiarowego w transformatorze. Stan zwarcia pomiarowego transformatora to stan, który polega na zasileniu transformatora takim napięciem, by w zwartej stronie wtórnej popłynął prąd znamionowy. Napięcie zasilania w takim stanie, zwane napięciem […]

The post Stan zwarcia pomiarowego transformatora first appeared on Breve - Producent Transformatorów.]]>

Pisaliśmy już o tym, czym jest stan jałowy transformatora i dokładnie przyjrzeliśmy się stanowi jego obciążenia

transformator_PSZ-160_BREVE

Teraz zajmiemy się kolejną właściwością – przybliżamy stan zwarcia pomiarowego w transformatorze.

Stan zwarcia pomiarowego transformatora to stan, który polega na zasileniu transformatora takim napięciem, by w zwartej stronie wtórnej popłynął prąd znamionowy.

Napięcie zasilania w takim stanie, zwane napięciem zwarcia, jest bardzo małe i osiąga wartości od kilku do kilkunastu procent napięcia znamionowego. Przy tak niskim napięciu zasilania, prąd magnesujący rdzeń i prąd odpowiedzialny za straty w żelazie, są pomijalnie małe w stosunku do prądu znamionowego strony wtórnej. A więc w tym stanie zasadniczą rolę odgrywają straty w rezystancjach uzwojeń i reaktancjach rozproszenia. Miarą tych właśnie strat jest  wielkość napięcia zwarcia, które jako jeden z parametrów transformatora pozwala wyznaczyć w przybliżeniu charakterystykę prądowo-napięciową. Napięcie zwarcia pozwala również zweryfikować możliwość połączenia równoległego transformatorów.

Schemat zastępczy dla stanu zwarcia pomiarowego przedstawia poniższa grafika:

schemat stanu zwarcia pomiarowego transformatora

Uwzględnia się, że prąd gałęzi poprzecznej, ze względu na znacznie niższe napięcie zasilania, jest pomijalnie mały oraz że:
Rzw = R1 + R’2;   Xzw = XΦ1 + X’Φ2 schemat zastępczy upraszcza się, co pokazuje rysunek poniżej:
uproszczony schemat zastępczy stanu zwarcia pomiarowego transformatora
Widać stąd również, że na podstawie pomiarów napięcia zwarcia, nie można rozdzielić reaktancji i rezystancji dotyczących strony pierwotnej i wtórnej. W praktyce rozdzielenie tych parametrów nie jest potrzebne.
Stan zwarcia pomiarowego transformatora, to zagadnienie warte rozwinięcia, w kontekście właściwości, jakie posiadają transformatory. Pisaliśmy już o tym, czym jest stan jałowy transformatora i dokładnie przyjrzeliśmy się stanowi jego obciążenia
Świetnie! A czy już na pewno wiemy jak w ogóle działa transformator?
mgr inż. Krzysztof Majewski
Kierownik Działu Handlowego
Breve-Tufvassons
The post Stan zwarcia pomiarowego transformatora first appeared on Breve - Producent Transformatorów.]]>
Dławiki sieciowe do układów napędowych firmy Breve https://www.breve.pl/blog/dlawiki-sieciowe-do-ukladow-napedowych-firmy-breve-tufvassons Tue, 07 Apr 2020 22:00:00 +0000 https://www.breve.pl/blog/dlawiki-sieciowe-do-ukladow-napedowych-firmy-breve-tufvassons Dławik to nic innego jak cewka indukcyjna z rdzeniem magnetycznym, zapobiegająca nagłym zmianom natężenia prądu elektrycznego. Może też służyć do ograniczenia prądu przemiennego bez strat mocy, jakie występowałyby gdyby elementem ograniczającym była rezystancja. Więcej informacji o cechach i rodzajach tych urządzeń można znaleźć tutaj. Dławiki sieciowe to urządzenia dedykowane do pracy w obwodach zasilania przekształtników, […]

The post Dławiki sieciowe do układów napędowych firmy Breve first appeared on Breve - Producent Transformatorów.]]>
Dławik to nic innego jak cewka indukcyjna z rdzeniem magnetycznym, zapobiegająca nagłym zmianom natężenia prądu elektrycznego. Może też służyć do ograniczenia prądu przemiennego bez strat mocy, jakie występowałyby gdyby elementem ograniczającym była rezystancja.

Więcej informacji o cechach i rodzajach tych urządzeń można znaleźć tutaj.

Dławiki sieciowe to urządzenia dedykowane do pracy w obwodach zasilania przekształtników, szczególnie w układach napędowych. Wspólną cechą przetwarzania energii elektrycznej za pomocą urządzeń energoelektronicznych są odkształcenia prądu od sinusoidy, oraz częste łączenia obwodów.
Rodzi to szereg zjawisk i potrzeb:

  • komutacyjne przepięcia na indukcyjnościach współpracującego transformatora,
  • generowanie wyższych harmonicznych prądu,
  • generowanie zakłóceń elektromagnetycznych,
  • potrzebę ograniczenia szybkości narastania prądu w celu ochrony struktur półprzewodników,
  • potrzebę ograniczenia mocy rozruchowych.

Firma Breve-Tufvassons oferuje dwa typoszeregi dławików sieciowych o nominalnym spadku napięcia 4% dla 3f-400V, i 1f-230V.
Dławiki są zbudowane na bazie rdzeni składanych z kształtek EI oraz 3UI, ze szczeliną powietrzną i o uzwojeniach miedzianych nawiniętych na jednolitych korpusach izolacyjnych.
Podwójna impregnacja próżniowa zapewnia dużą wytrzymałość mechaniczną i ochronę klimatyczną.

Dławiki są wykonane w stopniu ochrony IP00 i cieplnej klasie izolacji ta40B lub ta40F. Ich maksymalne napięcie obwodu to 750V.

W ofercie Breve są dławiki sieciowe jednofazowe D1N oraz trójfazowe dławiki sieciowe D3N.

dławik sieciowy jednofazowy D1N 150A/0,195mH 4%        Dławik sieciowy D3N 150A/0,195mH 4%

mgr inż. Krzysztof Majewski
Kierownik Działu Handlowego
Breve-Tufvassons

 

The post Dławiki sieciowe do układów napędowych firmy Breve first appeared on Breve - Producent Transformatorów.]]>
Jak działa transformator? (cz.1) https://www.breve.pl/blog/jak-dziala-transformator-cz-1 Wed, 11 Mar 2020 23:00:00 +0000 https://www.breve.pl/blog/jak-dziala-transformator-cz-1 Transformator służy do zmiany przemiennego napięcia o danej wartości na napięcie przemienne o innej wartości, przy zachowaniu tej samej częstotliwości. Szczególnym przypadkiem są transformatory, które nie zmieniają wartości napięć, ale wówczas służą do galwanicznego odseparowania zasilanego urządzenia od energetycznej sieci zasilającej. Istnieje szereg reguł i praw z dziedziny elektrotechniki, które mają zastosowanie w konstrukcji transformatorów. Jedną […]

The post Jak działa transformator? (cz.1) first appeared on Breve - Producent Transformatorów.]]>

Transformator służy do zmiany przemiennego napięcia o danej wartości na napięcie przemienne o innej wartości, przy zachowaniu tej samej częstotliwości. Szczególnym przypadkiem są transformatory, które nie zmieniają wartości napięć, ale wówczas służą do galwanicznego odseparowania zasilanego urządzenia od energetycznej sieci zasilającej.

Istnieje szereg reguł i praw z dziedziny elektrotechniki, które mają zastosowanie w konstrukcji transformatorów. Jedną z bardziej zaawansowanych teorii, od której można zacząć tłumaczyć zjawiska zachodzące w procesie transformacji napięcia, są równania Maxwella. Z ich interpretacji oraz uproszczeń wynikają również inne prawa i reguły, z którymi można spotkać się w literaturze dotyczącej elektrotechniki. Są to chociażby:

  • prawo Biota-Savarta służące do określania wartości indukcji magnetycznej;
  • prawo przepływu określające zależności między wielkością prądu, liczbą zwojów, wymiarami i przepływem;
  • prawo Faradaya / prawo indukcji elektromagnetycznej określające zależność między siłą elektromotoryczną indukowaną, a szybkością zmian skojarzonego strumienia magnetycznego;
  • reguła Lenza – określająca zwrot siły elektromotorycznej indukowanej jako przeciwdziałający zmianom strumienia magnetycznego wywołującego tę siłę;
  • zjawisko indukcji własnej polegające na indukowaniu się siły elektromotorycznej w cewce pod wpływem zmian prądu płynącego przez tę cewkę;
  • zjawisko indukcji wzajemnej polegające na indukowaniu się siły elektromotorycznej w cewce pod wpływem zmian prądu w innej cewce z nią sprzężonej.
Z powyższych reguł i praw wynikają wszystkie zjawiska związane z konstrukcją i pracą transformatora. Będą to zarówno pożądane, jak i również te niepożądane zjawiska, które są minimalizowane przez naukowców i konstruktorów.

Do niepożądanych zjawisk zaliczamy:

  • straty w żelazie (zjawisko prądów wirowych);
  • straty w miedzi (utrata mocy na rezystancji przewodów nawojowych);
  • strumień rozproszenia (zamykanie się części linii sił pola magnetycznego w przestrzeni nie skojarzonej z wtórnym uzwojeniem);
  • prądy pojemnościowe (wynikające z istnienia pojemności elektrycznych między uzwojeniami oraz uzwojeniami a rdzeniem);
  • odkształcenia prądów i napięć, a więc pojawienie się harmonicznych wyższych rzędów wskutek nieliniowości parametrów obwodu magnetycznego.

Transformator jednofazowy STM 500 230/24V

Uwzględniając najistotniejsze z wymienionych wcześniej praw i zjawisk, opracowano uproszczony model transformatora jednofazowego dwuuzwojeniowego, na podstawie którego można wyjaśnić zasadę jego działania i podstawowe zależności  między wielkościami wejściowymi, a wyjściowymi.

Kolejna porcja informacji o działaniu transformatora dostępna jest w naszym następnym wpisie.  Natomiast pełną ofertę transformatorów firmy BREVE można znaleźć na stronie www.breve.pl

 

mgr inż. Krzysztof Majewski
Kierownik Działu Handlowego
Breve-Tufvassons
The post Jak działa transformator? (cz.1) first appeared on Breve - Producent Transformatorów.]]>
Transformatory separacyjne https://www.breve.pl/blog/transformatory-separacyjne Wed, 11 Mar 2020 23:00:00 +0000 https://www.breve.pl/blog/transformatory-separacyjne Często pojawiają się pytania o transformatory separacyjne. Separacyjne  to te transformatory, w których napięcie wyjściowe jest najczęściej równe napięciu wejściowemu. Posiadają one separację galwaniczną między uzwojeniem pierwotnym i wtórnym. Transformatory separacyjne stosowane są tam, gdzie wymagana jest ochrona porażeniowa przed prądem doziemnym. Ich zadaniem jest niedopuszczenie do porażenia, przy jednoczesnym braku innych zabezpieczeń (np. wyłączników różnicowo-prądowych). […]

The post Transformatory separacyjne first appeared on Breve - Producent Transformatorów.]]>

Często pojawiają się pytania o transformatory separacyjne. Separacyjne  to te transformatory, w których napięcie wyjściowe jest najczęściej równe napięciu wejściowemu. Posiadają one separację galwaniczną między uzwojeniem pierwotnym i wtórnym.

Transformatory separacyjne stosowane są tam, gdzie wymagana jest ochrona porażeniowa przed prądem doziemnym. Ich zadaniem jest niedopuszczenie do porażenia, przy jednoczesnym braku innych zabezpieczeń (np. wyłączników różnicowo-prądowych). Szczególnie wyraźnym miejscem wykorzystywania właściwości przeciwporażeniowej transformatora jest praca elektronarzędziami w pomieszczeniach przewodzących – np. przy metalowych zbiornikach, czy praca w pomieszczeniach o utrudnionej swobodzie ruchów.
Szeroka oferta transformatorów BREVE obejmuje modele jednofazowe, trójfazowe, obudowane, na szynę oraz przenośne do elektronarzędzi. 
Pełną ofertę transformatorów, nie tylko separacyjnych, znajdą Państwo w naszym katalogu lub wyszukiwarce produktów.

The post Transformatory separacyjne first appeared on Breve - Producent Transformatorów.]]>
Jak działa transformator trójfazowy? https://www.breve.pl/blog/transformator-trojfazowy-jak-dziala Wed, 11 Mar 2020 23:00:00 +0000 https://www.breve.pl/blog/transformator-trojfazowy-jak-dziala Transformatory trójfazowe funkcjonują w taki sam sposób jak transformatory jednofazowe. Zasada działania jest analogiczna. Mamy tu jednak minimum trzy przewody zasilające, na których panują napięcia przemienne, przesunięte w fazie co 120°. Uzwojenia takiego transformatora nawinięte są na trzech kolumnach rdzenia. W typowych rdzeniach, uzwojenie nawinięte na środkowej kolumnie wytwarza strumień, którego droga zamknięcia się jest inna […]

The post Jak działa transformator trójfazowy? first appeared on Breve - Producent Transformatorów.]]>
Transformatory trójfazowe funkcjonują w taki sam sposób jak transformatory jednofazowe. Zasada działania jest analogiczna. Mamy tu jednak minimum trzy przewody zasilające, na których panują napięcia przemienne, przesunięte w fazie co 120°. Uzwojenia takiego transformatora nawinięte są na trzech kolumnach rdzenia.

W typowych rdzeniach, uzwojenie nawinięte na środkowej kolumnie wytwarza strumień, którego droga zamknięcia się jest inna niż w pozostałych, co musi być uwzględnione w procesie projektowania.

Na poniższym rysunku pokazano w uproszczony sposób konstrukcję transformatora trójfazowego.

Schemat konstrukcji transformatora trójfazowego
Napięcia Uf1 … Uf3 to napięcia fazowe strony pierwotnej, zaś uf1…uf2 to napięcia fazowe strony wtórnej. W praktyce, ze strony pierwotnej i wtórnej wyprowadza się trzy lub cztery przewody (cztery przewody występują wtedy, gdy wyprowadza się dodatkowo tzw. punkt zerowy). Stąd wniosek, że uzwojenia łączy się przed wyprowadzeniami.
Sposobów połączeń jest wiele. Podstawowe trzy pokazuje rysunek.
Połączenia uzwojeń transformatora - rodzaje
Połączenie w zygzak powoduje konieczność rozdzielenia cewek uzwojeń na dwie części.
Umownie podaje się symbole sposobu połączeń za pomocą liter:
Sposób połączeń
Uzwojenia pierwotne
Uzwojenia wtórne
Gwiazda
Y
y
Trójkąt
D
d
Zygzak
Z
z

 

Uzwojenia po stronie pierwotnej i wtórnej mogą być połączone w taki sam sposób czyli: Yy, Dd, Zz lub w sposób mieszany Yd, Dy, Yz, Dz. Ma to oczywiście wpływ na właściwości transformatora. Jedną z przyczyn tworzenia kombinacji napięć jest odpowiednie magnesowanie rdzenia dla różnych zastosowań, co ma istotne znaczenie przy niesymetrycznych obciążeniach strony wtórnej. Sposoby połączeń mają mają również wpływ na przekładnię napięciową oraz przesunięcie kątowe wektorów napięć wyjściowych względem wejściowych. O ile strony pierwotne i wtórne są połączone w ten sam sposób, to nie występują przesunięcia fazowe, a przekładnia zwojowa transformatora jest taka sama jak przekładnia napięciowa. Przykład:
Yy – n =N1 / N2 = U1R/ U2R
Jeśli jednak połączenia są mieszane, wówczas przekładnie zwojowe i napięciowe są inne.
Dy – n =N1 / N2 = √3 U1R/ U2R
Yd – n =N1 / N2 = U1R/ √3U2R
Yz – n =N1 / N2 = √3 U1R/ 2U2R
Oprócz zmiany przekładni napięciowej w połączeniach mieszanych, występuje przesunięcie fazowe między napięciami zasilającymi stronę pierwotną, a napięciami strony wtórnej. Mówi się wówczas o tzw. przesunięciu godzinowym. Jeśli np. napięcie strony wtórnej jest przesunięte w fazie o kąt 150◦, co odpowiada przesunięciu wskazówki zegara z godziny dwunastej na godzinę piątą, to mówimy wówczas, że przesunięcie godzinowe wynosi 5.
Często spotykaną grupą połączeń jest np. Dy11. Oznacza to, że uzwojenia strony pierwotnej połączone są w trójkąt, a więc transformator może być zasilany z trójprzewodowej sieci energetycznej, zaś strona wtórna jest połączona w gwiazdę, co pozwala oprócz wyprowadzenia trzech zacisków prądowych wyprowadzić czwarty zacisk wspólny dla uzwojeń tzw. punkt zerowy. Napięcia strony wtórnej są opóźnione względem napięć strony pierwotnej o kąt 330° lub można również powiedzieć, że wyprzedzają napięcia strony pierwotnej o kąt -30°.
 T3M 2000/A 3*500/3*230V
mgr inż. Krzysztof Majewski
Kierownik Działu Handlowego
Breve-Tufvassons
The post Jak działa transformator trójfazowy? first appeared on Breve - Producent Transformatorów.]]>
Jak działa transformator? (cz.2) https://www.breve.pl/blog/jak-dziala-transformator-cz-2 Wed, 11 Mar 2020 23:00:00 +0000 https://www.breve.pl/blog/jak-dziala-transformator-cz-2 Podstawowe informacje o tym, jak działa transformator wyjaśniliśmy w poprzednim artykule.  Warto jednak rozwinąć kilka kolejnych pojęć i zależności, aby jeszcze lepiej zrozumieć funkcjonalności, sposoby działania i budowę tego typu urządzeń. Jak wiemy, transformator składa się z rdzenia, na którym nawinięte są uzwojenia pierwotne i wtórne. Do zacisków uzwojenia pierwotnego przyłożone jest napięcie przemienne U1, […]

The post Jak działa transformator? (cz.2) first appeared on Breve - Producent Transformatorów.]]>

Podstawowe informacje o tym, jak działa transformator wyjaśniliśmy w poprzednim artykule.  Warto jednak rozwinąć kilka kolejnych pojęć i zależności, aby jeszcze lepiej zrozumieć funkcjonalności, sposoby działania i budowę tego typu urządzeń.

Jak wiemy, transformator składa się z rdzenia, na którym nawinięte są uzwojenia pierwotne i wtórne.

T3M 20A 3x500V-3x265VDo zacisków uzwojenia pierwotnego przyłożone jest napięcie przemienne U1, które wywołuje przepływ prądu w cewce uzwojenia pierwotnego o wartości I1.

Przemienny prąd elektryczny I1 wywołuje zmienne pole magnetyczne, którego linie sił zamykają się w rdzeniu ferromagnetycznym. Rdzeń ten jest dla pola magnetycznego znacznie lepszą drogą (czyli ma większą przenikalność magnetyczną) niż otaczające cewkę powietrze. Mówimy tutaj, że w rdzeniu przepływa strumień przemiennego pola magnetycznego.

Ten sam strumień przenika przez wnętrze cewki uzwojenia wtórnego indukując w nim siłę elektromotoryczną, która objawia się pojawieniem się przemiennego napięcia na zaciskach uzwojenia wtórnego (zjawisko indukcji elektromagnetycznej).

Ten sam strumień przenika również cewkę uzwojenia pierwotnego wywołując w niej siłę elektromotoryczną skierowaną przeciwnie do napięcia zasilającego (Reguła Lenza).

Strumień przemiennego pola magnetycznego jest wspólny dla obu uzwojeń, a indukowana siła elektromotoryczna jest taka sama dla każdego pojedynczego zwoju (Prawo przepływu), dlatego napięcie, jakie pojawi się na zaciskach strony wtórnej, zależy głównie od stosunku ilości zwojów w cewce uzwojenia pierwotnego i cewce uzwojenia wtórnego. W prosty sposób, przez różną liczbę zwojów obu uzwojeń otrzymujemy zmianę napięcia – czyli transformację.

Rys. 1

U1 – napięcie strony pierwotnej
U2 – napięcie strony wtórnej
I1   –  prąd strony pierwotnej
I2   – prąd strony wtórnej
Φμ  – strumień główny magnesujący
Φ1 i Φ2 – strumienie rozproszenia pochodzące od prądu pierwotnego pierwotnego wtórnego
Z1  – liczba zwojów uzwojenia pierwotnego
Z2  – liczba zwojów uzwojenia wtórnego
Korzystając z powyższego rysunku , można przedstawić model elektryczny transformatora jednofazowego dwuuzwojeniowego. 
Rys. 2:



R1 i R2 – rezystancje uzwojeń
XΦ1 i XΦ2 – reaktancje rozproszenia strony pierwotnej i wtórnej odzwierciedlające te części strumienia magnetycznego, które zamykają się w przestrzeni nie obejmującej cewki drugiej (zamykające się głównie przez powietrze)
E1 i E2 – siły elektromotoryczne indukowane

Na podstawie podanych oznaczeń wprowadza się następujące podstawowe pojęcia:
n = Z1 / Z2 – przekładnia zwojowa

Jeżeli strumień magnesujący jest wspólny dla obu uzwojeń, to wiadomo, że będzie on w każdym zwoju indukował taką samą siłę elektromotoryczną. Stąd tą samą przekładnię można określić jako stosunek sił elektromotorycznych
n =  E1 / E2

Stosując podany wzór na przekładnię, możemy sprowadzić wartości elementów strony wtórnej z rys 2 na stronę pierwotną. Wówczas:
U’2 = nU2  ;  I’2 = I2/n  ;  R’2 = n2R2  ;  X’Φ2 =  n2 XΦ2

Dzięki czemu powstaje powszechnie stosowany schemat zastępczy transformatora.

Rys. 3:

Linią przerywaną zaznaczono możliwość wprowadzenia dodatkowej rezystancji RFe oznaczającej straty w rdzeniu, które powstają w skutek powstawania prądów wirowych. W praktyce często można tę rezystancję pominąć, gdyż zwykle  RFe >> Xμ
Analizując różne stany pracy transformatora na podstawie schematu z rys. 3 można poznać wiele istotnych własności transformatorów, o których z pewnością przeczytacie jeszcze na naszym blogu.
mgr inż. Krzysztof Majewski
Kierownik Działu Handlowego
Breve-Tufvassons
The post Jak działa transformator? (cz.2) first appeared on Breve - Producent Transformatorów.]]>
Elektroniczne zasilacze do oświetlenia LED https://www.breve.pl/blog/zld-elektroniczne-zasilacze-do-oswietlenia-led Sun, 02 Feb 2020 23:00:00 +0000 https://www.breve.pl/blog/zld-elektroniczne-zasilacze-do-oswietlenia-led W tym artykule chcielibyśmy przedstawić najważniejsze zalety naszych elektronicznych zasilaczy ZLD przeznaczonych do oświetlenia LED. Jeśli chcecie dowiedzieć się więcej, zapraszamy do zapoznania się z pełną charakterystyką dobrej klasy zasilaczy do żarówek LED firmy BREVE, którą można znaleźć w tym artykule.

The post Elektroniczne zasilacze do oświetlenia LED first appeared on Breve - Producent Transformatorów.]]>
W tym artykule chcielibyśmy przedstawić najważniejsze zalety naszych elektronicznych zasilaczy ZLD przeznaczonych do oświetlenia LED.

Jeśli chcecie dowiedzieć się więcej, zapraszamy do zapoznania się z pełną charakterystyką dobrej klasy zasilaczy do żarówek LED firmy BREVE, którą można znaleźć w tym artykule.

The post Elektroniczne zasilacze do oświetlenia LED first appeared on Breve - Producent Transformatorów.]]>
PCS 250/9A – transformator do cięcia styropianu https://www.breve.pl/blog/pcs-250-9a-nowy-transformator-do-ciecia-styropianu Sun, 03 Nov 2019 23:00:00 +0000 https://www.breve.pl/blog/pcs-250-9a-nowy-transformator-do-ciecia-styropianu Jednym z ważnych elementów ocieplania budynków jest odpowiednie przycinanie styropianu. Istotne jest aby docinane płyty dolegały precyzyjnie jedna do drugiej. Cięcie mechaniczne np. piłą czy nożem powoduje wykruszanie się dużej ilości kuleczek styropianu, przez co rzaz jest bardzo postrzępiony. Przygotowane w ten sposób płyty po przyklejeniu na ocieplaną ścianę wymagają dodatkowego uszczelniania pianą poliuretanową aplikowaną […]

The post PCS 250/9A – transformator do cięcia styropianu first appeared on Breve - Producent Transformatorów.]]>

Jednym z ważnych elementów ocieplania budynków jest odpowiednie przycinanie styropianu. Istotne jest aby docinane płyty dolegały precyzyjnie jedna do drugiej. Cięcie mechaniczne np. piłą czy nożem powoduje wykruszanie się dużej ilości kuleczek styropianu, przez co rzaz jest bardzo postrzępiony. Przygotowane w ten sposób płyty po przyklejeniu na ocieplaną ścianę wymagają dodatkowego uszczelniania pianą poliuretanową aplikowaną z pistoletu, co wydłuża czas montażu i podnosi koszty.

Dodatkowym negatywnym aspektem tej techniki jest powstawanie bardzo dużej ilości okruchów styropianu (kuleczek), które zaśmiecają plac budowy i ze względu na swoją znikomą wagę roznoszone są z wiatrem po okolicznych posesjach, co zazwyczaj spotyka się z nieprzyjemnymi i uzasadnionymi reakcjami sąsiadów.
Aby uniknąć tego typu niedogodności można zastosować inną technikę cięcia styropianu: CIĘCIE GORĄCYM DRUTEM OPOROWYM.
Jest wiele technik takiego cięcia – począwszy od prostej ramki drewnianej z napiętym odcinkiem drutu oporowego, aż do bardzo zaawansowanych maszyn tnących we wszystkich płaszczyznach wraz z łukami i skosami.
Większość maszyn do cięcia styropianu zasilanych jest z transformatorów o mocy 100-250W i napięciu wyjściowym około 24V. Jednak mało kiedy otrzymujemy możliwość regulacji temperatury drutu tnącego. Konieczność takiej regulacji wynika z dużej różnicy temperatur podczas prowadzonych prac. Mamy do czynienia z temperaturą od 2-3 stopni w marcu czy październiku aż po ok. 35 stopni w lipcu czy sierpniu. Dochodzi do tego jeszcze chłodzący czynnik wiatru. Zbyt chłodny drut powoduje spowolnienie cięcia i sklejanie się przecinanych elementów. Z drugiej strony, zbyt wysoka temperatura drutu tnącego powoduje topienie się styropianu i stratę precyzji docinanych elementów oraz utratę zaplanowanych wymiarów.
Oferowane przez BREVE rozwiązanie czyli: transformator do cięcia styropianu PCS 250/9A zaprojektowany jest tak, aby zapewnić użytkownikowi możliwość regulowania temperatury drutu tnącego zapewniając jednocześnie pełne bezpieczeństwo. Szeroki zakres regulacji od 20V do 28V pozwala na wyeliminowanie negatywnego wpływu zmian temperatury otoczenia na roboczą temperaturę drutu tnącego. Regulacja realizowana jest za pomocą 5-cio pozycyjnego przełącznika o skoku 2V.

Najważniejsze cechy PCS 250/9A:

  • Zasilanie drutu tnącego napięciem bezpiecznym dla użytkownika.
  • Zapewniona separacja od napięcia sieciowego 230V.
  • Możliwość wygodnej i precyzyjnej regulacji temperatury drutu tnącego.
  • Zabezpieczenie transformatora przed uszkodzeniem w wyniku zwarcia lub przeciążenia.
  • Wygodny w obsłudze bezpiecznik automatyczny.
  • Brak konieczności wymiany przepalonych wkładek bezpiecznikowych na nowe.
  • Ergonomiczna zwarta konstrukcja.
  • Wygodny i wytrzymały uchwyt do przenoszenia.
  • Wytrzymały profesjonalny przewód zasilający.
  • Wysoki stopień ochrony (IP44) zapewniający bryzgoszczelność transformatora.
  • Sygnalizacja zasilania drutu tnącego podświetlanym wyłącznikiem.
  • Wygodne gniazdo pozwalające na szybkie podłączanie drutu tnącego.
  • Wtyczka załączona do zestawu.


Specyfikacja techniczna:
Napięcie zasilające: 230V
Napięcie wyjściowe regulowane: 20V – 22V – 24V – 26V – 28V
Częstotliwość: 50 Hz
Moc: 250W – max 9A

The post PCS 250/9A – transformator do cięcia styropianu first appeared on Breve - Producent Transformatorów.]]>